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Abstract—N-Heterocycles can be alkylated with cinnamyl bromide to give the cationic salts 6–10 and subsequent reactions with
C6H6 and superacidic CF3SO3H provide the addition products in good yields. Reactions of N-acetonylpyridinium salts give the
condensation product from C6H6 and CF3SO3H and the dicationic intermediate can be directly observed using low temperature
13C NMR spectroscopy. © 2002 Elsevier Science Ltd. All rights reserved.

The 1-(3,3-diarylpropyl)amines are compounds having
a variety of pharmacological activities.1 In clinical
applications, fenpiprane 1 and prozapine 2 are spas-
molytics and tolpropamine 3 is an antihistaminic.2 We
have recently reported two new synthetic routes to
compounds like 1 and 2, and both routes exploit the
reactivities of dicationic electrophilic intermediates
(Scheme 1).3–5 Compound 1 has been prepared by the
superacid-catalyzed (TfOH:triflic acid, CF3SO3H) reac-
tions of the olefinic-amine (4) or the amino acetal (5).
We hypothesized that novel analogues of 1 could also
be prepared from N-pyridinium salts and related N-
heterocyclic salts. In the following report, we describe
the reactions of N-cinnamylpyridinium bromide (6) and

other heterocyclic salts (7–10) with C6H6 in TfOH and
propose the formation of dicationic electrophilic inter-
mediates. We also describe our results from the reac-
tions of N-acetonylpyridinium salts and report the
direct observation of a dicationic intermediate.

The N-heterocyclic salts 6–10 are prepared by the reac-
tion of cinnamyl bromide with the corresponding hete-
rocyclic compound.6 When these salts are allowed to
react reacted in a solution of TfOH and C6H6, the
addition products 11–15 are obtained in generally good
yields (Table 1).7 The pentenyl derivative (16) likewise
gives the addition product 17 from TfOH and C6H6

(Eq. (1)). It is proposed that the salts (6–10) are regiose-

Scheme 1.
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Table 1. Products (11–15) from the reactions of CF3SO3H and C6H6 with cinnamyl derivatives of N-heterocycles (6–10)

lectively protonated to give dicationic intermediates like
18 that react with benzene to provide the addition
products (Eq. (2)). Despite the fact that TfOH has been
used as an acid-catalyst in the polymerization of
olefins,8 there is no evidence of oligomerization of these
salts. Due to electrostatic repulsion, the dicationic inter-
mediates presumably cannot attack the olefinic sites of
the unreacted starting materials.

(1)

The effects of the cationic heterocyclic groups can been
seen by comparing the chemistry of salts 6–9 with the
chemistry 1,3-diphenylpropene (19). Reaction of 19
with TfOH and C6H6 gives a complex mixture of >10
products and there is no evidence of the addition

product, 1,1,3-triphenylpropane (Eq. (3)). This result
suggests that the pyridium group activates the adjacent
electrophilic (carbocationic) site and renders it more
reactive towards C6H6. This activation is similar to the
well known inductive effects of adjacent electron-with-
drawing groups (-CF3, -NO2, and carbonyl groups) on
electrophilic sites;9 however, in the case of 18, this
activation may involve both inductive and electostatic
effects.

(3)

The electrophilic activation of the pyridinium group is
also seen with carboxonium ion electrophiles. When
N-acetonylpyridinium bromide (20) is reacted with
C6H6 and TfOH, the condensation product (22) is
formed as the only product in 95% yield (Eq. (4)).
Product 22 can also be prepared from hydroxyacetone

(2)
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Figure 1. 13C NMR spectrum of the dication 21 from the reaction of 20 with FSO3H:SbF5 (1:1) in SO2ClF at −60°C.

(4)

and pyridine by in situ formation of the N-
acetonylpyridinium salt (Eq. (5)). In contrast, ketones
such as acetophenone or cyclohexanone do not react
with benzene despite being almost completely proto-
nated in TfOH. These results indicate that dication 21
is far more electrophilic than monocationic carboxo-
nium ions (i.e. protonated cyclohexanone).

(5)

The dicationic species can also be directly observed by
low temperature 13C NMR. When compound 20 is
dissolved in a solution of FSO3H:SbF5 (1:1) and
SO2ClF at −80°C, the dication 21 is formed cleanly
(Fig. 1). The carboxonium carbon appears as a single
resonance at 237 ppm, which is consistent with other
reported values of carboxonium carbons.10 The obser-
vation of 21 indicates that the dicationic intermediates
can form appreciable concentrations in superacidic
media. Efforts were also made to observe the dicationic
species from compound 6, but the pyridinium–carbe-
nium dication (18) could not be detected as a cleanly
formed ion. This may be the result of proton exchange
reactions or even second protonation at the phenyl
ring.

In summary, we have found that cationic analogues of
1-(3,3-diarylpropyl)amines can be prepared in good
yields from the salts of N-heterocycles. The chemistry is
driven by the activation of the carbocationic elec-
trophiles. This activation arise from the influence of the
cationic heterocyclic groups and a similar activation is
demonstrated for a carboxonium system.11
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